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Abstract

In this paper the technique of the dynamic stability analysis proposed for the conventional laminated structures is
extended to the activated shape memory alloy (SMA) hybrid rotating shafts under the time-dependent compressive
axial loading. The influence of the activation through the change of the temperature on the dynamic stability domains is
examined. Changing with the temperature the Young’s modulus of SMA fibers enters into a global stiffness parameter
of the shaft. Thermally induced membrane forces in SMA fibers and changing with temperature damping coefficient
also modify shaft dynamic equations. The activated SMA hybrid shaft is treated as a beam-like structure. The thin-
walled composite shaft is flexible thus it should be supported on the both ends in order to avoid large deflections. By
using the standard stability technique we arrive at the effective sufficient criterion of the dynamic and almost sure
stochastic stability. The stability regions are given as functions of the loading characteristics, the external damping
coefficient, the lamination angle, and the properties of the shaft material. The results indicate that the global activation
causes an increase of the critical (admissible) axial force both for the glass—epoxy/NiTi—epoxy and for the graphite—
epoxy/NiTi-epoxy hybrid shafts. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently, composite materials find an increased range of applications for high-performance rotating
shafts (e.g., see Nepershin and Klimov, 1986; Bauchau, 1983). Thin-walled standard angle-ply laminated
tubes meet relatively easy the requirements of torsional strength and stiffness but are more flexible to
bending and have specific elastic and damping properties which depend on the system geometry, on the
physical properties of plies, and on the laminate arrangement. Such systems are also sensitive to lateral
buckling.
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The shape memory alloy (SMA) hybrid composites are a class of materials capable of changing both
their stiffnesses through the application of in-plane loads and their elastic properties. The stiffness modi-
fication occurs as a result of the thermally induced martensite phase transformation of the SMA fibers
which are embedded in standard laminated composite structures. The shape memory effect may be de-
scribed as follows. An element in the low-temperature martensitic condition, when it is plastically deformed
and then the external load is removed, will regain its original shape when heated. The variation of the
Young’s modulus of the SMA is very different from that of conventional metallic materials. The Young’s
modulus of the nitinol (Nickel-titanium alloys), which is an example of such a material, increases 3-4 times
(Cross et al., 1970), when the temperature changes from that below M (i.e., in the martensite phase) to that
above 4y (i.e., in the austenite phase). A nitinol of proper composition exhibits unique mechanical memory
or restoration force characteristics. Large plastic strains of the magnitude of 6-8% may be completely
removed by the process of heating the material so as to transform it to its austenite phase. The damping
of vibrations in the SMA due to internal friction exhibits also an important characteristics. The low-
temperature martensic phase is characterized by a large damping coefficient while the high-temperature
austenitic phase shows a low damping coefficient. The decrease ratio is approximately equal to 1:10 (De-
jonghe et al., 1977). Comprehensive studies of eigenfrequencies and eigenfunctions of the SMA hybrid
adaptive panels with uniformly and piecewise distributed actuation have been presented in papers by
Rogers (1990), Rogers et al. (1990) and Pietrzakowski (2000). The results indicate that the activation by the
temperature effectively changes the eigenfrequencies, the mode shape of the plate, and the sound trans-
mission through composite panels.

In this paper the technique of the dynamic stability analysis proposed for the conventional laminated
structures is extended to the activated SMA hybrid structures under the axial time-dependent loads. In this
dynamics study the hybrid elements will be treated as a thin symmetrically laminated shell containing both
the conventional (e.g., graphite or glass) fibers, and the activated SMA fibers. As the dynamic stability
problem is related to the parametric vibration of structures, the stabilization of motion strongly depends on
a dissipation of energy. The commonly used simplest model of viscous damping with constant coefficients is
assumed in the paper, despite the fact that there exist more advanced theories of energy dissipation (see
Schultz and Tsai, 1969). Formulas determining the dynamic stability regions will be written explicitly, and
the parameters of stability domains will be calculated.

The purpose of the paper is to analyze the stability criterion of the shaft equilibrium. We will consider
the influence of the activation through the change of the temperature on the stability domains of the shaft in
the case when the axial force is time-dependent. The stochastic loading is assumed in the form of the ergodic
stationary processes, with continuous realizations. The structure buckles dynamically when the axial force
becomes so large that the structure does not oscillate about the unperturbed state, and a new increasing
mode of oscillations occurs. In order to estimate the perturbed structure motions we introduce a measure of
distance, | - ||, of the solution of dynamics equations with nontrivial initial conditions from the trivial
solution. We say that the trivial solution w = 0 of dynamics equations is almost sure asymptotically stable if
the measure of distance between the perturbed solution and the trivial solution, || - ||, satisfies the condition
P(lim,_ ||w(.,7)|]| = 0) = 1, where P denotes the probability. Using the appropriate energy-like Liapunov
functional, the sufficient stability conditions for the almost sure stochastic stability of the shaft equilibrium
are derived. Finally, the influence of SMA activation on stability regions is examined.

2. Activated rotating shafts
The shaft, treated as a symmetrically laminated shell, contains both the conventional (e.g., graphite or

glass) fibers oriented at +® and — O to the shell axis and the activated SMA fibers parallel to the shaft axis
(cf. Fig. 1). The SMA fibers are placed in sleeves. If the ends of fibers are fixed to the external frames the
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Fig. 1. Exploded view of the shaft layers.

recovery stresses generate the tensile axial force in the shaft. If the ends of SMA fibers are fixed to the shaft
hoops, the recovery stresses are balanced by the shaft, and the resultant axial force in the shaft cross-section
is equal to zero. The shaft, which rotates with constant angular velocity €, is also subjected to a constant or
time-dependent external axial destabilizing force S(¢). Due to the symmetric arrangement of layers, the
equations relating in-plane moments and force resultants with the strain state components decouple, and
we can write the constitutive equation of a symmetrically laminated tube (since the coupling stiffness matrix
B is equal to zero, cf. Jones, 1975) in the form

N Ay A A | | en
Ny | = [Ain Ap Ay | | e (1)
Ni Ais A Ass | | €12

where ¢;; and 4;; denote strains and in-plane laminate stiffness matrix, respectively. Assuming that the shaft
consists of a large number of orthotropic layers, 414 and Ay, become negligible and the matrix equation (1)
decouples. Since the circumferential force Ny, is much smaller than the axial force, we may neglect Ny, in the
second equation of Eq. (1) and calculate the reduced Young’s modulus of the beam-like cylindrical shell
(Bauchau, 1983)

AL\ 1
Ey= (4 —=2 )~ 2
o= (an =205 @
Changing with temperature Young’s modulus enters into the stiffness matrix, where in-plane shell stiffnesses
are expressed by

N
Ay = (Qij)khk (3)
=1

The reduced stiffnesses Ql.j of the kth layer of thickness %, can be calculated using the engineering
constants of orthotropic layer E|j, E,;, Gs, V12, and the lamination angle ©.

By forcing the martensite austenite transformation of the SMA layer we modify the basic mechanical
properties, such as the Young’s modulus and the internal damping coefficient. Also, we apply the recovery
stresses which partially act in the cross-section of the shaft, and partially are balanced by the shaft
boundaries. The shaft is compressed by an external force consisting of a constant value £, and the variable
part F(¢). The shaft of length ¢ is assumed to have a constant circular cross-section without initial geo-
metrical imperfections. The mean density is denoted by p and the area and the geometrical moment of
inertia of the shaft’s cross-section are denoted by 4 and J, respectively. The dynamic equations, containing
the Coriolis acceleration and the acceleration of transportation, are written in the rotating coordinate
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system with respect to displacements « and v of the shaft axis. A viscous model of external damping with a
constant proportionality coefficient f§ and the Voigt—Kelvin model of internal damping with the coefficient A
are assumed to describe the dissipation of the shaft energy. The equations of motion of the shaft, expressed
by transverse displacements u and v in the movable coordinate system (y, z), has the form

u, — Qu+ 2Qu, + B(u, + Qv) + ety + Ay + (fo + F())ure =0, x€(0,4) 4)

Uy — Qv —2Qv, + P, — Qu) + ev e + A0 + (fo + F(8))0.e =0 (5)

where e = EyJ/pA, fo = Fo/pA, f(t) = F(t)/pA and Q is the angular velocity. Due to the small thickness,
the shaft is flexible and smooth working conditions require support at both ends. It means that the dis-
placements of the shaft in supporting bearings are small as compared with the transverse displacements of
thin-walled flexible shaft. Thus, we have the following boundary conditions expressed in terms of dis-
placements
u(0,£) =v(0,7) =0, u,(0,1) =v,(0,/))=0 (©)
0, un(lt)=0v,(l1t)=0

3. Stability analysis

In order to derive the dynamic stability criteria the Liapunov functional is applied in a form of a sum of
the modified kinetic energy and the elastic energy of the shaft (cf., Tylikowski, 1986)

1 [f .
Y = 3 / {(u‘t + Qu+ Pu+ Jt )’ + (1,4 Q) + (v, — Qu A4 o+ ) + (v, — Qu)’
0

26, +1%,) + 2fo(u + 02) f e (7)

The functional (7) is positive-definite if the axial force f; is smaller than the static buckling load f,.
Then the measure of distance can be chosen as a square root of the functional ||w(x, )| = #"'/*. First we
analyze the case of constant axial loading f(¢) = 0. As the force f; acting in the shaft axis is constant, the
classic differentiation rule is applied in order to calculate the time derivative of the functional in the di-
rection of the shaft motion

dv ! .
T /0 {00400 + 200+ 020) + 26 + V) + (Be = @)l +02,)
= Mo+ 1) + 208 — ) = Bfo(u + ¢2) + B + 1) } dx ®)
After rewriting, we receive
dv”
= B 4+
=BT+ )

where the auxiliary functional % is known. Now, we look for a function y which satisfies the following
inequality

ULy (10)
Substituting the inequality (10) into Eq. (9) yields the first order differential inequality
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dv

o< (1)
the solution of which is given as

ri<r©ep |- (s [ o) (12)

Using inequality (12) we obtain the upper estimation of the measure of distance between the disturbed
solution and the trivial solution

sl < ot Ollexp | =5 (5= [ 2(orae ) (13)

Sufficiently large damping coefficient f§ implies the stability of equilibrium state.
In order to find y effectively we use the expansions of the displacement satisfying boundary conditions (6)

Zs sm@ (14)
= nmx
= T, in— 15
) = DT sin (15)
Therefore,
(x,1) :ZS,, sin@ (16)
= . . X
v,(x, 1) =Y T,(0) sin =~ (17

n=1

Due to the existence of even-order space derivatives in the functional (7) and in its time-derivative (8),
the value of functionals can be calculated as a sum of the suitable quadratic terms

i im (18)
n=1

=3, (19)
n=1

where 77, is calculated from formula (7) for a single term of the expansion. If y,, which satisfies a single
term inequality, is known

dv’,
dr

then the following chain of inequalities is true

%:i@/ Zyn (maxy)"/:;{“// (21)
n=1

Therefore, the function y can be effectively calculated. Introducing x, = y, — f we rewrite inequality (20) in
the form

Y (20)

Vl: n
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dv
W ——— =0 22
" dr (22)

Substituting the nth terms of expansions (14)-(17) into inequality (22) we obtain the second order quadratic
inequality with respect to the four variables 7, T,, S,, S,:

. , 1 : . 1 .
S+ L2+ 28,10+ (B+ Jot)’S2 4+ T2+ S2Q7 — 21,8, + 5 (B+ Gd) T2 4+ T,T, (B + Aot
+ (e — fo)og(Sy + T) 160 + (83 + T7) (B + 40t;) + 2BAS, T, — S, 1)

+ [(Be — 22%)op + Aleay — fo)os — Bfoo, + BL] (S + T7) = 0 (23)

After some reduction we obtain the auxiliary matrix of the quadratic form

a b 0 d
b ¢ —d 0
0 —d a b (24)
d 0 b ¢
where
1
a=B+0+K, b= 3 (B+ 202 Kcn, d=Q(B+ k),
1
¢ = K, |, (e — fo) + Q +5 (B+ /locj:)Q + (ex? — fo) (et + B) — Q*(Joit — B)
We recall the Sylvester’s conditions for the positive-definiteness of the auxiliary matrix (24):
a>0 (25)
ac—b*>0 (26)
alac —b* —d*) >0 (27)
(b +d* —ac)’ >0 (28)

As the latest inequality, (28) is satisfied, it is easy to notice that the third Sylvester inequality (27) is essential
from the stability point of view. After extensive but straightforward algebra we obtain the quadratic in-
equality with respect to k,

(B+ do2) (e — fo)o2 — @ 07al >0
(B + 202)” + 4o (e — fy)

It leads to the determination of the value of x, and to the formula which determines y,

Kﬁ + Zai(eoci —fo)k, +4 (29)

+ 20 407028
A, = \/(ﬂ ) — Jo? (30)
V(B + o) + da2(e22 — fi)

Estimating the limit behavior of y, as n tends to oo, we find

Q@ < (14 B Lim*) (1 = fo/ fir) (31)
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where w; = n*\/e/I> denotes the first natural frequency of the shaft at rest in the absence of axial
force. Thus, Q becomes larger if £, < 0, (i.e., fy is tensile force). We may observe that if fy = fi; = en®/I*
then Q = 0. It is evident that the critical angular velocity decreases as the inner damping coefficient 4
increases.

4. Stability analysis of the shaft compressed by a time-dependent force
For a stationary continuous with probability one axial force the time derivative of the functional is
calculated in the same way as for the constant axial force. The constant y in inequalities (10) and (11) is a
random functions due to the randomness of f. Substituting
b—b—2f()
¢ — ¢~ (B+Aa)onf(7)

we obtain the matrix of which the positive definiteness implies the stochastic stability of the shaft motion.
Using the Sylvester’s conditions yields the modified value of the function y,

B ) B+ ) + R S (1) + 4P|
— — 20, (32)
V(B + ) + do2(ea? — fi)

The ergodicity of the axial force leads to the following almost sure stochastic stability condition

E max y,(t) < p (33)

where E denotes a mean value operator. Since y depends on f3, the almost sure stability criterion has a form
of the transcendental equation involving the force statistical characteristics. In order to obtain the stability
regions we choose discrete values of f and compute y, from Eq. (32). We select the largest value corre-
sponding to the given value of f. Then we multiply it by the density of probability distribution depend-
ing on the variance of axial force f and we integrate over the range of f. This procedure is performed

for unactivated and activated states and for the varying damping coefficient  until the inequality (33)
holds.

5. Results

Numerical calculations based on the formula (33) are performed for changing parameters of SMA fibers
and external damping coefficient. A number of iterative steps are performed in order to determine the value
of . The dimensions of the hybrid shafts are taken as: length ¢ =1 m, radius » = 0.04 m, and total
thickness # = 0.002 m. Stochastic stability domains are calculated for the fixed shaft angular velocity
Q = 500 1/s smaller than the critical value obtained from Eq. (31) and the constant component of external
axial force equal to zero. The material data are given in Table 1. The shaft consists of seven layers of equal
thickness: of two external activated layers with the SMA fibers parallel to the shaft axis and of five internal
conventional layers symmetrically arranged with the lamination angle ®. Thus, the laminate configuration
can be uniquely defined by the following notation: [0°/@/ — ©®/0/ — ©/6 /0°]. Expressing the in-plane
stiffnesses of lamina by the engineering constants we can calculate the in-plane stiffnesses A4;;
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Table 1
SMA hybrid shaft specifications
Material Nitinol-Epoxy NiTi — 40%, Epoxy — 60% Glass—Epoxy Graphite—Epoxy
Activated Unactivated
Density kg/m? 2350 2350 1790 1560
Ey GPa 41.93 19.31 53.98 211.0
E» GPa 20.93 17.25 17.93 5.30
G, GPa 7.54 6.43 8.96 2.60
Vi2 0.25 0.25 0.25 0.25
A 0.01 0.019 0.01 0.01
5. 2 .
A= 7Qij + ?QijNiTi h, i,j=12 (34)

where Q,-j represent the transformed in-plane stiffnesses of conventional lamina depending on angle O,
Oinim are in-plane stiffnesses of the lamina with SMA fibers (the lamination angle is equal to zero). Sub-
stituting Eq. (34) into Eq. (2) we obtain the reduced Young’s modulus E, of the beam-like cylindrical shell
for both the unactivated and the activated state of SMA fibers. The maximum recovery stress corre-
sponding to the initial strain € = 1% was assumed in calculations. While calculating the axial force f; in the
activated state we assume that the recovery stresses are partially acting in the cross-section of the shaft and
partially are balanced by the boundaries. The ratio of the force balanced by the edges to the total recovery
force is called the boundary recovery ratio and is denoted by r,. The extremum states r, = 1 when the
recovery stresses are balanced totally by the boundaries, and r, = 0 when the recovery stresses are balanced
by the reminder of the shaft cross-section, are shown in Fig. 2. The results are shown in Figs. 3-6. The

SMA fibers

Fig. 2. Visualization of boundary conditions.
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Fig. 3. Comparison of stochastic stability domains for unactivated and activated nitinol-epoxy/graphite-epoxy shaft for different
activation factors.
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Fig. 5. Critical value of force variance as a function of the external damping coefficient f for different shaft materials.

200000 ¢

200000 F

variance

100000

00z 004 006 008 0.4
external damping coefficient

\ Gaussian process
h
W\ graphite - epoxy
A =0.01

Fig. 6. Critical value of force variance as a function of the external damping coefficient f§ for various lamination angles ©.

05 1
lamination angle

9355



9356 A. Tylikowski, R.B. Hetnarski | International Journal of Solids and Structures 38 (2001) 9347-9357

influence of different activation parameters on stability domains of hybrid graphite—epoxy/nitinol-epoxy
shaft with the Gaussian parametric excitation is shown in Fig. 3. Curves 1-5 represent the stability limits:
curve 1 is for activated state due to decrease of the inner damping coefficient A only; curve 2 is for the
unactivated state; curve 3 is for fully activated state, r, = 1; curve 4 is for the activated state with no de-
crease of inner damping coefficient 4 and for no recovery axial force, r, = 0; curve 5 is for the activated state
with no decrease of inner damping coefficient A, r, = 1. It is seen that among three thermal activation
factors: the increase of the effective Young’s modulus, the increase of extensional axial force, and the
decrease of internal damping, the greatest role in the increase of the stability domain plays the axial force.
In contradiction to the formula (31) (for the constant external axial force) the decrease of internal damping
significantly decreases the stability domains. The largest stability domains occur when the recovery stresses
are balanced totally by the boundaries (1, = 1). Figs. 4-6 compare the critical value of force variance 6> as a
function of the external damping coefficient f for different class of parametricexcitation, materials, and
lamination angles @, respectively. The activated states and the unactivated states are denoted by conti-
nuous and broken lines, respectively. Fig. 4 compares the stability domains on plane (f, ) calculated for
the nitinol-epoxy/graphite—epoxy shaft (@ = n/4) in unactivated and activated states for the Gaussian (G)
and harmonic forces (H). The critical variance of time-dependent force component strongly depends on the
external damping coefficient . The differences between stability regions calculated for the Gaussian loading
and the harmonic are negligible. The influence of the shaft material on the critical value of force variance is
shown in Fig. 5, where the nitinol-epoxy/graphite—epoxy shaft and the nitinol-epoxy/glass—epoxy shaft
(O = n/4) are denoted by Gr and GI, respectively. The influence of lamination angle on stability domain is
calculated for the external damping with = 0.01.

6. Conclusions

A technique has been presented for the analysis the dynamic stability of a globally activated simply
supported hybrid shaft consisting of the symmetrically laminated classical angle-plies and the symmetri-
cally laminated active plies with axially oriented SMA fibers. The dynamic stability and the stochastic
stability problem is reduced to the problem of the positive definiteness of the auxiliary matrix. The explicit
criteria derived in the paper define stability regions in terms of the geometrical and material properties, the
lamination angle, as well as the constant values and variance of axial loading. For the constant axial force
the criterion assumes a closed form of an algebraic inequality. If the axial force is time-dependent, the
almost sure stability criterion has a form of the transcendental equation involving the force probability
distribution. Analytical results are presented to demonstrate how the thermal activation affects critical
parameters. The results indicate that the global activation significantly increases the admissible variance
of time-dependent component. The most important role in increasing of the stability domains is played
by the axial force following from the recovery stresses. The increase depends highly on the boundary
recovery ratio. The effect is more pronounced for the graphite—epoxy/nitinol-epoxy shell than for the
glass—epoxy/nitinol-epoxy hybrid shafts. The influence of the loading class (Gaussian or harmonic) is not
substantial.
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